Conteúdo principal Menu principal Rodapé
Atualidades

Método alia inteligência artificial a imagens de satélite para mapear áreas com integração lavoura-pecuária

Trabalho desenvolvido por grupos da Embrapa Agricultura Digital e da Unicamp favorece a gestão dos recursos agrícolas e oferece subsídios para a formulação de políticas públicas

O sistema integrado lavoura-pecuária (ILP) consiste em combinar plantações, em especial de grãos (soja, milho e sorgo), com plantas forrageiras, utilizadas para alimentar bois e porcos, e pecuária, principalmente gado de corte, de maneira rotacional em forma de consórcio. Dessa forma, a plantação garante a maior parte da entrada de capital, enquanto os animais têm alimento à disposição até mesmo durante a estação seca e ajudam com o manejo das sementes. Com isso, há aumento da fertilidade do solo, da produtividade e da recuperação de áreas degradadas, além de redução do uso de agrotóxico, do risco de erosão, da sazonalidade da produção e dos custos operacionais. O trabalho acontece de maneira mais integrada e sustentável, já que uma atividade beneficia a outra e há menor impacto ambiental e redução nas emissões de carbono.

Em estudo divulgado na revista Remote Sensing of Environment, pesquisadores da Empresa Brasileira de Pesquisa Agropecuária (Embrapa) e da Universidade Estadual de Campinas (Unicamp) descrevem um método, baseado em ferramentas de inteligência artificial, que permite identificar por imagens de satélite as áreas em que sistemas ILP estão sendo empregados. Esse conhecimento, segundo os autores, pode beneficiar a produção agropecuária brasileira de diversas maneiras.

A pesquisa contou com financiamentos da Fapesp (projetos 21/15001-9, 18/24985-0 e 17/50205-9) e da Organização Neerlandesa para a Pesquisa Científica (NWO).

“O objetivo principal do projeto, fruto de uma colaboração internacional para abordar questões relacionadas à agricultura sustentável, foi promover a integração de dados de sensoriamento com imagens da superfície terrestre obtidas a distância utilizando técnicas de inteligência artificial, agricultura de precisão e modelos biogeoquímicos para entender e criar modelos da dinâmica desse tipo de sistema”, conta Inácio Thomaz Bueno, engenheiro florestal cujo projeto de pós-doutorado enfatiza o monitoramento de sistemas de integração lavoura-pecuária utilizando imagens de sensoriamento remoto de alta resolução espacial e temporal.

“Também focamos na necessidade de aumentar o conhecimento sobre a ILP, já que existem muitas questões ainda em aberto e há uma carência em relação a métodos eficazes para monitorar a estratégia e explorar seu potencial, além da necessidade de identificar áreas de ILP alinhadas aos Objetivos de Desenvolvimento Sustentável [ODS] da ONU [Organização das Nações Unidas] relacionados à agricultura, meio ambiente, desenvolvimento econômico e social.”

Leia matéria na íntegra no site da Agência Fapesp.

Leia o artigo Mapping integrated crop-livestock systems in Brazil with planetscope time series and deep learning
 

Ir para o topo